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ENERGY CASCADING IN THE BEAT-WAVE ACCELERATOR

C. J. McKinstrie(®) and S. H. Batha!?
(a) Lcs Alamos National Laboratory, Los Alamos. New Mexico 87545
() Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623

A review is given of energy caicading in the beat-wave accelerator. The
properties of the electromagnetic cascade and the corresponding plasma-
wave evolution are well understood witkin the framework of an approximate
analytic model. Based on this model, idealised laser-plasma coupling effi-

ciencies of the order of 10% do not seem unreasonable.

1. Plasma-Wave Generation

In the plasma beat-wave accelerator [1], the plasma wave is generated by the beating of two
co-linear lasers [2]. The higher-frequency laser is denoted by the subscript 1, the lower-frequency
laser 18 denoted by the subscript 0 and the plasma wave is denoted by the subscript p. The radiation
pressure of the lasers induces longitudinal plasma oscillations at the laser beat-frequency. If the i ‘cident
frequencies are chosen so that the plasma wave is resonantly driven, the conservatinn of energy and

momentum is manifested by the frequency and wavevector matching conditions
wi =wn+wp, ki =ko+k,.

It follows that the phase apeed of the plasma wave can be expressed in terms of the incident frequencies
and wavevectors a8 (u  -wn)/(ky —kg). In an underdense plasma, in which the plasu.a frequency is much
less than the incident frequencies. this is equal to the group speed (1 - w?/w2)!/? of the light waves.
Fhe Lorentz factor associated with the phase speed of the plasma wave is therefore equal to wo/w).

‘urrent sxperiments with ('O lasers have wo/w, = 10, while a proposed device has wg/w, = 100

[ he plasma-wave amplitude evolves according to the equation

8 a ..
(.’_‘ + ..,3)4,, = —udy Ay A) + 04,74, | (n

where the group speed, coupling constant and nonlinear frequency-shift coetficient ars given by
rp = 3!'3/(‘ . "P = r’k:,’-lu: L= .'L.J:/rl"“j . )]

respectively  Tune s measueed inoumite of o' and distance s measured woumits f ewy o, v the

prak density fluctuation aanciated wita the plasma wave, normahzed to the background density - The



corresponding electrostatic field is
E, ~097(nfem=3))""% 4,

Ay and Ag are the peak “quiver” velocities of electrons in the laser fields and are related to the incident
laser intensities by

A = 8.5 x 1071, [um} (1 [Wem™2)) /2

In the linear regime, the plasma wave grows indefinitely. Eventually, however, the quiver velocity
of electrons in the plasma-wave field hecomes so large that the lowest-order relativist” corrections to
the electron mass must be retained in the equations of motion. Thia results in a nonlinear reduction
in the natural frequency of tiie piasma wave by an amount which s proportional tc the square of the
wave amplitude [3]. As a result of this relativistic frequency shift, the plasma wave is driven out of
phase with the beating of the two light waves and the growth of the plasma-wave saturates. If the
interaction is allowed to continue, the plasma-wave energy is fed back into the light waves and the

plasma-wave amplitude decreases accordingly.

Consider the interaction of the light waves and the plasma wave at some arbitrary point & in
the plasma. Initially, the plasma wave has only noise-level amplitude. At some time 7y, the leading
edges of the laser pulses reach the position ;. The plasma wave then starts to grow according to
Eq. (1), with laser amplitudea which now depend on time. This growth continues until the relativistic
frequency shift detunes the interaction, or the trailing edges of the laser pulsss pas, by, whichever
occutrs first. For times later than 7y + n, the plasma wave oscillates freely, with the amplitude it had
at tune ry + 1. To maximize the energy in the plasma wave, the laser pulse-length 7 must be tailored
to comeide with the maximum plasma-wave amplitude. Th's limits the energy in the incident laser
pulses and, hence, the energy which can ultimately be delivered to the accelerated particles in one
stage. Nince the group speed of a plasma wave in a typical beat-wave plasma ia essentially zero (2).
the en~rgy depomited in the plasma wave is left hehind the laser pulses, which continually propagate

into fresh plasma and rontinue the process anew.

The saturation time and saturated amplitude for a given pulse shape can be estimated by using the
linear plasma-wave amplitude to determine the cumulative phase sh:ft due to the plasma nonlinearnty.
limponing the condition that the cumulative phase shift equals »/2 radians determines the saturation
tume and saturated amplitude as a function of the incident laser intensities and pulse shapes  The
incident pulse lengths can then be chosen to roncide with the marimum plasma-wave amphitude, as

discnsaed above The Rosenbluth-Liu saturation time s given by
Fyw, 1= (74 - 20)| A, 4972 (h

where the coefficient of 7 ¢ applies to laser amphtudes which are conatant i tune (square pusses) and

the cortlicient of 20 applies ) laser amplitudes which grow linearly in time (:riangular pulses) In the



latter case, A; and Ay denote the peak laser amplitudes. The corresponding saturation length L, is

equal to the acceleration time multiphed by the speed of light. The saturated amplitude is given by
Amar = (18 = 114, A1 73 (1)

where the coefficient of 1 8 applies to square pulses and the coefficient of 1.7 applies to triangular

pulses. In Fqs. (3) and (4), the weak dependence of T, and A,,,, on u()/u’, has been suppressed.

This simple theory of plasma-wave generation is in good agreement with the results of computcr
simulations [4], [5]. Experimental verification was first obtained by Joshi et al. [6]. The 9.6 um
(A = 0.030) and 106 um (A, = 0.015) lines of a ("O4 laser were used to resonantly drive a plasma
wave ia a plasma o density | 1 x 10'7 cm~3. The laser amplitudes were modeled as growing linearly in
time for a duration of 1 ns. For these parameters, Eq. (5) predicts a maximum plasma-wave amplitude
Ap of approximately 0.08 at the muddle of the laser pulse. By measuring the time-integrated scattered
light, an average amplitude A, of 0 01 003 was inferred, in good agreement with the theoretical
estimate. The corresponding elect:ostatic field was 3 10 MeVem~™!, which marked the first time a
longitudinal field in excess of 1 MeVcm™! had been produced, in a controlled manner, by any means.
Ebrahim et al. [7] have also confirmed the theory by measuring the acceleration of injected electrons. In
their experiment, the 96 um (4, = 0.054) and 10.6 um (A & 0.060) lines of a CO3 laser were also used
to resonantly drive a plasma wave in a plasma of density 1.1x 10!7 em™!. For these parameters. theory
predicts a maxinum plasma-wave amplitude A, of approximately 0.16 and a corresponding maximum

electrostatic field of approximately 3G MeVem™!

The electrons were produced by irradiating an
aluminum slab with an auxiliary high-intensity (*Q, laser The energy of the electrons obtained in
this manner was 0.5 1.0 MeV. Measurements indicated that electrons injected at 0.6 MeV were
accelerated to 20 MeV. Since the resonant plasma region was only 0.15 e¢m long, this implied that the

average electrostatic field was 10 MeVem™ !, in good agreement with the theoretical estimate.

2. Long-Time Evolution

It can be seen from Eq. (3) that, for typical laser intensities (4, = 0 2), the plasma-wave saturation
time is of the order of 102 u;‘. On this timescale, the mechanisma described in Section 1 are dominant
However, the saturation time is much shorter than the acceleration time, defined as the time taken
by an accelerated particle to traverse one quarter wavelength in the wave frame. Approximating the
apeed of the accelerated particle by the speed of light gives an acceleration time of A, /[4(c = ry)] By

expressing vy tn terma of the frequency ratio wo/wp, this hecomnes
Fafwy 1= 3 Hwo/wp)? (")

The acceleration length [, s the acceleration time multiplied by the speed of light and corresponds to

the distance travelled by the accelerated particle during the acceleration tume  For proposed heat wave



parameters, the acceleration time is of the order of 10* w>! There are several processes which can

P
occur on this longer timescaie and have important consequences for the plasma-wave evolution.

Behind the laser pulses, the wake of the plasma wave becomes turbulent. This can be due to the
parametric decay instability, in which the plasma wave decays into a secondary plasma wave and an ion-
acoustic wave (8] - [10], or the modulational instability {11]. These instabilities both involve ion motion
and occur on a timescale longer than the electron timescale w; ' by a factor of (m,/Zm,)"/? where Z
is the ionic chatge. The modulational instability can also occur due to the relativistic nonlinearity in
Eq. {1). The turbulent wake cannot be used for particle acceleration, and so plasma-wave generation
and beam loading must be accomplished before either of these instabilities occur. Since the incident
laser pulses continually propagate into fresh plasma, the deleterious effects of the ion instabilities can,
in principle, be avoided. For a detailed discussion of these competing processes and the corresponding
linitations on the plasma-wave growth time, the reader is referred to the papers of Mora [12] and

Pesme et al. [13].

In the preceding analysis, the self-consistent evolution of the light-wave amplitudes was not taken
into account. Just as the beating of the incident {ight waves produces a resorant plasma wave at
the difference frequency, the beating of the transverse electron quiver-velocities with the plasma-wave
density luciuation produces oscillating currents at the sum and difference frequencies. In this way, a
spectrum of co-linear light waves 1s generated, with frequencies and wavevectors which differ from tliose
of the incident waves by integral mulitiples of w, and k, respectively. In contrast to the secondary
waves described above, these sidebands propagate with the incident waves and modify the process
of plasma-wave generation. This nonlinear interaction czn also be viewed as a series of three-wave
processes in which a photon either decays into a lower-frequency photon and a plasmun, or recombines
with a plasmon to produce a higher-frequency photon. Notice that the total numher of photons 1s
conserved, and so the total electromagnetic energy is proportional to the average (. tion-weighted)
electromagnetic frequency. Notice also that the number of plasmons is equal to the diffecence between
the number of decay interactions and the number of recombination interactions. [u follows that only
a fraction wp/wy of the incident laser energy can be transferred to the plasma wave in the primary
three-wave interaction {14]. For proposed beat-wave parameters, this is of the order of 1%. To increase
the energy transfer to the plasma wave and ultimately to the accelerated particles, the laser energy

must be made to cascade "downwards” from the incident waves to their lower-frequency sidebands

Since the long-time svolution of the piasma wave s determined by the interaction of several
competing physical processes, the natural way to study the plasma-wave evolution would seem to be
vsing computer sunulations. Unfortunately however, this approach is prohibitively expensive. From
the above discusasion, the plasma-wave generation, interaction with the electromagnetic sidebands and

sibaeqaent decay into secondary waves all take place in a distance of the order of the vacuration length



Ly (3), measured from the front of the incident laser-pulses. Using a moving simulation code, one can
save vast amounts of computer time by following this interaction region as it propagates through the
plasma [15]. The simulation timestep is determined by the shortest relevant oscillation period, which,
in this case, is that of the light waves. Measured relative to the plasma frequency, the simulation
timestep scales as wo/w,. The plasma-wave evolution must be studied for times of the order of the
interaction time T, which scales as (wo/wp)?. It follows that the total cost of simulating the plasma-
wave evolution scales as (wo/wp)3. A reference simulation of experimental parameters takes about 1
Cray-hour [16]. A simulation of proposed parameters would therefore take of the order of 10® Cray-
hours, which is much too expensive for exploratory physics. For this reason, much effort has been

devoted to analysing the relevant amplitude equations.

Neglecting ion effects, the governing equations are

a 3 . . ‘ .
(5? + vm-(g)Am = =i (Amy1 AL eXP(=ibmy1t) + Ami Ap exp(ibmt)) |
P P (6)

2
A,

(297 Frpam+ v)dp = =iy 3 AmAra_y exp(=ibint) + ial 4,

where the 4., are the quiver velocities of the electrons in the fields of the electromagnetic sidebands.
The plasma-wave damping coefficient, and the electromagne.ic group speeds and coupling constants
are given by

V=V [y, v = (] —u;/..;?")l“ v Bm =wp /b (7)

respectively  The wavevector kg, of the mth sideband 1s equal to ko + m(k; ~ ko). However, due to
dispersion, the driven frequency wo+m(w;—wo) is not equal to wm, the natural frequency (u;+c2k;‘")‘”

of the mth sideband. The frequency-mismatch coefficients
bon = (Wm ~—wmey = Wp)/“’p

are given approximately by

bm 64 + (M = 1)(wp/uwp)® (8)

Formula (8) also allows for the general case in which the beat-frequency w; ~ wy of the incident waves
18 not exactly equal to the pla~ma frequency w,. Since the plasma frequency depends on the election
density, this linear frequency mismatch occurs experimentally whenever the slectron density is not
exactly equal to the value necessary for a resonant interaction. It should be noted that the problem
can slso be formulated in terms of the driven frequencies and the natural wavevectors. In this case, the
eflects of electromagnetic dispersion manifest themselves an wavevactor mismatches. This difference 1

purely aesthetic and does not alter the physics of t'ie interaction.



3. Temporal Cascade

There are four main timescales which are relvant to the governing equations (6): the mismatch
timescale on which the plasma-wave nonlinearity detunes the plasma wave from the beating of the
incident waves, the cascading timescale on which a significant amount of energy is transferred to the
sidebands of the incident waves, the damping timescale on which a significant amount of plasma-wave
energy is lost to dissipation and the dephasing timescale on which electromagnetic dispersion detunes
the sidebands. These four timescales depend sensitively on experimental parameters such as the plasma
density and temperature, and the incident laser freauencies and intensities [17]. Some idea of the rich
variety of solutions to the full spatio-temporal equations (€) is given by the solutions of the simpler
temporal equations (8, = 0). In Fig. 1, the action density |Ap}?/3, of the piasma wave, normalised
to the initial action density |4,|?/3, of the higher-frequency pump wave, is plotted as a function of
time. For proposed beat-wave parameters, the Rosenbluth-Liu saturation time is much shorter than
the time for a complete transfer of action between the higher-frequency pump wave and the plasma
wave, and so the peak amplitude of the piasma wave is limited by relativistic detuning. In the absence
of damping, the plasma-wave amplitude exhibits nonlinear reccurrence, as shown in Fig. 1(a). When
damping is included, the plasma-wave amplitude exhibits some transient nonlinear oscillations before
tending to a metastable steady-state, as shown in Fig. 1(b). For experimental paranieters, the time for
a complete transfer of action from the higher-frequency pump wave to the plasma wave is slightly less
than the Rosenbluth-Liu saturation time, and so the peak amplitude of the plasma wave is not limited
by relativistic detuning. However, the evolution of the plasma-wave amplitude is highly irregular, as
shown in Fig. 1(¢). When damping is included, the evolution of the plasma-wave amplitude becomes

even more irregular, as shown in Fig. 1(d).

Fortunately. however, the small parameter w, /wo which makes computer simulations so expensive
facilitates an approximate analytic solution to the governing equations. Cohen, Kaufman and Watscn
were the first to study the purely temporal (or purely spatial) equations, in the context of the beat-
heating of a plasma [18]. The eflects of the plasma-wave nonlinearity were not inzluded in their analysis.
Cohen, Kaufman and Watson noticed that, for the case in which wp/we 18 much less than unity and
the electromagnetic energy has not spread to large values of |m|, the coupling constants /3,, (7) ace
apptoximately equal and the dispersive contribution to the frequency-mismatch coefficients 4., (8) can
be neglected. Physically, these approximations mean that the cross-section for up-scattering iy equal
to the cross-section for down-scattering, and that all the sideands are resonantly driven. By using the

approximations described above, Cohen, Kaufman and Watson were able to show that

{
T(E Y Amdn., 0. (9)
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Figure 1. The action density |A,|?/0, of the plasma wave, normalised to the initial
action density |A;|?/8; of the higher-frequency pump wave, is plotted as a function
of time. (a) wo/w, = 100; Ay = 49 =0.2,»v = 0.0. (8) wo/wyp = 100; Ay = Ag = 0.2
v = 0.001. (¢) wo/wp = 10; Ay = A = 0.2, v = 0.0. (d) wofwp = 10; Ay = Ag = 0.2,
v = 0.001.



A3 the cascade develops, the plasma wave is driven not only by the beating of the incident waves,
but also the beating of any pair of adjacent sidebands. Result (9) shows that the totai ponderomotive
force of the electromagnetic waves is constant. This decouples the plasma-wave equation from the
equations which determine the evolution of the sidebands. After solving for the plasina-wave amplitude
as a function of time, A, becomes a known coupling term in the sideband equations, which can then be
solved analytically. This approach was also used by Karttunen and Salomaa [19], [20], who included the
effects of the plasma-wave nonlinearity. Given the analytic solutions to the approximate equations, one
can then determine important properties of the cascade, such as how the peak amplitude of the plasma
wave depends on the linear frequency mismatch §, and how electromagnetic energy is shared among
the sidebands. Although collisional damping plays an important role in the long-time development of
the temporal cascade, it is relatively unimportant in the long-time development of the spatio-temporal
cascade. Because of this lack of direct relevance to current beat-wave acceleration schemes, the effects

of damping are not studied in detail.

For the purposes of beat-wave acceleration, the plasma-wave amplitude should be as large as
possible. In Section 1, plasma-wave generation was discussed for the case in which the frequency
matching of the incident lasers was exact. If the frequency matching is not exact, the plasma wave is
detuned from the beating of the incident waves by a total frequency mismatch of &, + ajA,|?. Tang,
Sprangle and Sudan showed that ore can partially compensate for the nonlinear detuning by using
an electron density for which &, is small and negative [21], [22]. Although the plasma wave grows
more slowly in the linear regime, it stays in resonance with the incident waves for a longer time and
ultimately grows to a larger amplitude. This idea has been extended by Bobin (23] and Martin et
al. [24], who allowed the linear frequency mismatch to be a function of time. These investigations
show that the plasma-wave amplitude can be increased by roughly a factor of two. However, to take
full advantage of this eflect, the electron density must be precisely controlled. Even if the electron
density could be controlled with sufficient precision, the plasma-wave growth time is significantly
longer than for exact frequency matching and the modulational instability is likely to disruot the
plasma-wave during its growth phase [25]. If one specifies a tolerable range for the ,.ak plasma-
wave amplitude and corresponding saturation time, the above analyses can be inverted to find the
tolerable uncertainty in the electron density [4). This is perhaps their most practical use. Within
the framework of the approximate equations, the electromagnetic cascade is symmetric with respect
to the incident frequencies. However, when the effects of electromagnetic dispersion are taken into
account, the cascade can be biased “downwards”. This is because the dispersive contribution to the
frequency mismatches o (8) depend algebraically on the modenumber m. By arrauging for §; to be
small and positive, the cascade to higher frequencies is detuned, while the cascade to lower frequencies
is enhanced. Since energy is conserved, the decrease in electromagnetic energy is reflected in a larger

plasina-wave amplitude. This effect, which was first noticed by Cohen, Kaulinan and Watson, is in



competition with the effect of Tang, Sprangle and Sudan. However, it is only important on a timescale
Trmlwy ']~ 1.5(wo/wp)?/(m=1) . (10)

This dispersion timesczle depends sensitively on the rate of generation of new sidebands. It will
shortly be shown that, for weakly-relativistic laser amplitudes, the dispersion timescale is longer than

the acceleration timescale. This justifies the neg.ect of dispersion in the approximate equations.

The rate of generation of new sidebands is easily estimated. Let M be the index of the lowest-
frequency sideband of any appreciable amplitude. From Egs. (6), the amplitude Ap_, of the next
sideband grows according to d;|Axm 1| = Om-1/AMAp|. By analogy with the theory of three-wave
interactions, this growth can be expected to saturate when the action density |Ap—1|?/8rp-1 of the
daughter wave is of the order of t e initial action density |Aps|?/8p of the parent wave. This condition
determines the time taken to generate the next sideband or, equivalently, the rate at which new

sidebands are generated. Specifically,
d
M~ —(BuBu-1}'"" 4y . (11)

This cascading rate is proportional to the relevant coupling constants and the plasma-wave amplitude,
as one might expect. A simnilar result can be derived for the cascading of energy to the higher-frequency
sidebands. Using the analytic solutions of the approximate equations, Karttunen and Salomaa have

estimated the cascading rate to be

d
M = 284, . (12)

Estimates (11) and (12) agree to within a factor of two in their common regime of validity. Notice

that the cascading rate depends implicitly on the linear frequency mismatch §,.

The predicted properties of the electromagnetic cascade can be checked by numerically solving
the exact equations. In Fig 2, the exact electromagnetic spectrum is plotted at time intervals of
ten Rosenbluth-Liu oscillation periods. For laser amplitudes A; and Ag of 0.2, this time interval
is approximately 1.5 x 10% w;!. In Fig 2(a) the cascade is symmetric with respect to the incident
frequencies. This is to be expected since, for small values of [m|, the cross-sections for up-scattering
and down-scattering are equal. The spectrum spreads by about 8 sidebands in 5 time intervals. This
corresponds to a cascading rate of about 1.1 x 1072 w,. Equations (10) and (11) predict a cascading
rate of about 1.5 x 10=3 w, and 0.75 x 10~3 w, respectively, in fairly good agreement with the observed
rate. A reasonable estimate for the cascading time T, defined to be the time taken to generate all the

lower-frequency sidebands, is therefore
Telw; ') 2.7(wo/wp)?(4,) " (13)

where () denotes an average over the Rosenbluth-Liu oscillation period. The dependence of T. on

wo/wp ard (Ap) follows from Eqs. (11) and (12), while the coefficient of 2.7 is derived from the
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observed cascading rate. It follows from Eqs. (5), (10) and (13) that T,,,/T, > T./2T, ~ (2.3(4,)) "%
For weakly-relativistic laser amplitudes, the ratio T, /7T, is always greater than unity and so the
effects of electromagnetic dispersion can be neglected on the acceleration timescale. Notice that Eq.
{10) predicts that the cascade to lower frequencies should proceed more quickly and that the cascade
to higher frequencies should proceed more slowly as larger values of |m| are reached, in qualitative
agreement with Fig. 2(4). The natural tendency of the system is to share the electromagnetic energy
among the sidebands. This can be seen even more clearly in Fig. 3, in which the entropy ~ 3 Pn log Pm
of the electromagnetic spectrum is plotted as a function of time. Apart from small fluctuations on the

Rosenbluth-Liu timescale, the electromagnetic entropy increases monotonically with time.

4. Spatio-Temporal Cascade

The only quzlitative difference betwaen the temporal cascade and the spatio-temporal cascade is
that, in the latter, each wave convects at its group speed as it interacts with the other waves. For the
case in which w,/we is much less than unity, the approximations used to study the temporal cascade
are also valid for the spatio-temporal cascade. In additinn, the electromagnetic waves all propagate

with approximately the same group speed v,. By using these facts, Karttunen and Salomaa [26] were

able to show that

(?987 + vo%) 3 AmAn_, %0

This mieans that the total ponderomotive force of the electromagnetic waves is independent of time,
in a frame moving with the electromagnetic waves. The driving term in the plasma-wave equation
18 therefore a known function of z — vgt, or equivalently, the retarded time t — r,/vo measured from
the leading edge of the laser pulses. After solving for the plasma-wave amplitude a8 a function of
the retarded time, A, becomes a known coupling term in the sideband equations, which can again be

sclved analytically.

For exact frequency matching, the maximum plasma-wave amplitude and corresponding saturation
time are giveu by Eq. (4) and Eq. (3) respectively. The temporal analyses (21]) - [25] of the effects
of frequency mismatch are valid for the spatio-temporal problem, providing that one works in terms
of the retarded time and takes the effects of laser pulse-shape into account. The estimates (11) and
(12) for the cascading rate are also valid for the spatio-temporal problem. Since the cascading rate 1s
proportional to the plasma-wave amplitude, which ts now a given function of z—~vt, the electromagnetic
spectrum spreads most rapidly at the trailing edge of the incident laser pulses where the plasma-wave
amplitude is largest. The cascading length L. 18 ~qual to the cas- .ding time (13) multiplied by the
speed of light, with the average plasma-wave amphtude (A,) replaced by the maximum plasma wave

amplitude A (4) The collisional damping of the plasia wave is only important for large values of



the retarded time. These values of the retarded time correspond to a portion of the plasma wave which
is far behind the interaction region and is not coupled to the electromagnetic sidebands. It follows that

the plasma-wave generation and the cascading of electromagnetic energy are unaffected by damping.

Unfortunately, the accuracy of the analytic model described above cannot be checked by com-
parison with numerical solutions of the exact governing equations, because such solutions do not yet
exist. There is, however, a current effort to rectify this shortcoming. In the meantime, the regime
of validity of the analytic model can be estimated by examining the self-consistency of the reievant

approximations.

In cont:ast to the temporal problem, in which the peak plasma-wave amplitude has no effect on
th» symmetry of the electromagnetic cascade, in the spatio-temporal problem the peak plasma-wave
amplitude does have an effect on the symmetry of the cascade. For optimal laser pulse-lengths, the rate
of deposition of laser energy in the wake of the plasma wave is proportional to the square of the peak
plasma-wave amplitude. This electrostatic energy is ieft behind the interaction region as it convects
through thc plasma. Since energy is conserved, there must be a corresponding decrease in electromag-
netic energy and, hence, in the average electromagnetic frequency. Thus, the spatio-temporal cascade
is inherently asymmetric, even for exact frequency matching. Unfortunately, neither the convective loss
of electrostatic energy nor the inherent asymmetry of the cascade is self-consistently taken into acount
in the approximate equations. The lengthscale on which these effects become important can be easily
estimated. Since the rate of energy transfer to the plasma wave is constant, the pump-depletion length
Lq is determined by the requirement that the energy contained in the wake of the plasma wave is equal
to the total energy which was originally contained in ths laser pulses. Taking the laser pulse-lengths

to be given by Eq. (3) and the plasma-wave amplitude to be given by Eq. (4), yields

2
- _ wo\ [ 141 + IAol’)
Lalow; "]~ (2.2 2.4)(%) ( ) (14)

where the coefficient of 2.2 applies to square pulses and the coefficient of 2.4 applies to triangular pulses.
By definition, this is also the lengthscale on which the average electromagnetic frequency decreases
to zero. There is also a convective loss of electromagnetic energy due to the small difference in the
group speeds vm (7) of the sidebands (27). However, this does not become important until a significant

amount of energy has spread to large values of |mj|.

It follows from the preceding analysis that there are four conditions which must be satisfied if the
analytic model 18 to be self-consistent. The neglect of electromagnetic dispersion and the neglect of the
difference in the coupling constants both require that electromagnetic energy has not spread to large
values of |m|. This will be the case if [, (5) is much less than L. (13). The convective energy loss will
be small compared to the incident laser energy if L, is much less than L4 (14) and the asymmetry of

the cascade will be ummportant if 7, is much less than Lg. These four constraints can be summarised



by the inequality

Lo<< L.<< Lyq. (13).

Notice that all three lengthscales in condition (15) scale as (wo/wp)? and are only weakiy dependent
on the incident laser pulse-shapes. For the common case in which the incident laser-amplitudes are
equal, the ratio L./L, is approximately equal to 0.34, independent of laser amplitude. As a specific
example, for incident lager-amplitudes of (.06, the three lengthscales are in the ratio 1.0: 3.4: 10 and

condition (15) is reasonably well satisfied.

The laser-plasma coupling efficiency 7 is defined to be the fraction of incident laser energy which
is transferred to the plasma wave during the acceleration time. Since energy is deposited in the wake

of the plasma wave at a constant rate, the laser-plasma coupling efficiency is given by
nxLy/La.

For the specific example desacrited above, the laser-plasma coupling efficiency is approximately 10%.
In principle, the maximal laser-plasma coupling efficiency could be significantly greater than 10%.
However, the approximations used in the analytic model are not valid for large values of n and so a

definitive conclusion cannot be drawn at present.

5. Summary

A review was given of energy cascading in the beat-wave accelerator. The physics of the electro-
magnetic cascade and the corresponding plasma-wave evolution are qualitatively well understood. A
quantitative analysis of these phenomena can be made using the analytic soluticns of an approximate
set of governing equations. For the temporal cascade, the accuracy of this approximate analytic raodel
has been verified by comparison with numerical solutions of the exact set of governing equations. For
the spatio «emporal cascade, such numerical solutions are not currently available. However, by exam-
ining the self-consistency of the relevant approximations, the regime of validity of the analytic model

can be estimated.

For proposed beat-wave parameters, the effects of electromagnetic dispersion do not seem to be
important on the acceleration timescale. This suggests that the plasma wave will remain coherent long
enough to accelerate injected particles to high energy. In addition, idealised laser-plasma coupling
efficiencies of the order of 10% do not seem unreasonasbe. Perhaps the most serious obstacle to the
experimental realisation of such laser-plasma coupling efficiencies is the production of sufficiently-

umform plasmas. Recent progress in this direction has been reported by Dyinoke-Bradshaw et al. [28]
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